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Abstract. Within the framework of the high-temperature series expansions technique, we examine the
phase transition and the critical phenomena of a two-component superlattice with simple cubic structure,
through three models: Ising, XY and Heisenberg. The reduced critical temperature of the system is studied
as a function of the thickness of the constituents and the exchange interactions in each material, and within
the interface. We show the existence of a critical thickness of the unit cell at which the reduced critical
temperature of the binary superlattice remains insensitive to the exchange coupling within the interfaces.
The values of the effective critical exponent γeff associated with the magnetic susceptibility agreed with
the universal classes in the limit cases where the superlattice is still comparable to an infinite simple cubic
lattice. We attribute the breakdown in the universality hypothesis to the crossover effects.

PACS. 75.70.Cn Magnetic properties of interfaces – 75.70.-i Magnetic properties of thin films, surfaces,
and interfaces

1 Introduction

In recent years, there has been major growth in the body
of experimental and theoretical knowledge regarding the
origin and behavior of the phase transition in magnetic
layered structures and superlattices. Layered composite
materials may be distinctly different from those of their
bulk counterparts [1,2]. In particular, research has been
focused on systems such as magnetic superlattices [3,4]
and multilayers [5,6].

Magnetic superlattices are defined as periodic layered
structures with alternating layers having different mag-
netic properties. Phase transitions in the superlattices and
multilayers have their own behaviours, which are different
from those in the bulk materials. They have been inves-
tigated by use of various theoretical methods. Fishman
et al. [7] investigated a periodic multilayer consisting of
two ferromagnetic materials in a theory based on general
Ginzburg-Landau formulation. They obtained the transi-
tion temperature and spin wave spectra. The Landau for-
malism of Camley and Tilley [8] has been applied to calcu-
late the critical temperature in this system [9]. For more
complicated superlattices with an arbitrary number of dif-
ferent layers in an elementary unit, Barnas [10] has derived
some general dispersion equations for the bulk and sur-
face polaritons. These equations are then applied to mag-
netostatic modes and retarded wave propagation in the
Voigt geometry [11]. Recently, Sy and Ow [12], using the
mean field approximation, and Seidov and Shaulov [13],
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using the effective field theory with the differential oper-
ator technique, studied the phase transition in an alter-
nating magnetic superlattice. Saber et al. [14] using the
effective field theory with a probability distribution tech-
nique that accounts for the self-spin correlation functions,
studied the critical properties in a magnetic superlattice
consisting of two ferromagnetic materials with different
bulk transition temperatures. The critical temperatures
were obtained as functions of the site dilution and thick-
ness of the superlattice with various exchange interactions
in the same material and across the interface.

In this contribution we present a theoretical study of
the critical properties of an infinite, alternating superlat-
tice using the high-temperature series expansions (HTSE)
extrapolated with the Padé Approximants method [15].
We have considered three kinds of models, namely Ising,
XY and Heisenberg types. The series expansions for the
magnetic susceptibility have been derived to order six in
the reciprocal temperature, including nearest neighbour
exchange couplings in the two superlattice constituents
and across the interface (see Fig. 1). Our intention is to
study the effects of different exchange couplings on the
critical temperature of the superlattice and on the effec-
tive critical exponent associated with the magnetic suscep-
tibility. The semiclassical method of HTSE given by Stan-
ley and Kaplan [16] has the following advantages: firstly,
one can exactly deal with any symmetry of the magnetic
structure; secondly, we can easily treat the Ising, XY and
Heisenberg models in a unified way; thirdly, this method is
more fundamental than usual molecular field approaches
as it takes into consideration spin-spin correlation. The
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Fig. 1. Two-dimensional cross section of a unit cell of an in-
finite superlattice composed of two ferromagnetic materials A
and B, where N = Na + Nb is the thickness of the cell.

method considered here has been widely developed [17,18]
because it is one of the most powerful and rigorous ways to
study physical systems. It provides valid estimations of the
critical temperatures for real magnetic systems [19–21].

2 Formalism

We consider an infinite simple cubic superlattice in which
Na layers of material A alternate with Nb layers of mate-
rial B, which is the ABAB · · · structure. The periodic
condition suggests that we only consider one unit cell
which interacts with its nearest-neighbours via the inter-
face coupling. A schematic diagram of the unit cell under
consideration is given in Figure 1. The coupling strength
between nearest-neighbouring spins in A (B) is denoted by
Ja(Jb) while Jab stands for the exchange coupling between
nearest-neighbouring spins across the interface. Starting
with the zero-field Heisenberg Hamiltonian:

H = −2
∑

ij

Jij Si · Sj . (1)

The summation runs over all the pairs of nearest-
neighbour pair interactions in the unit cell. The sign of the
Jij is assumed to be positive (ferromagnetic). Si is the spin
operator at site i, of length S̄2 = S(S +1) for the two ma-
terials. The statistics of our spin system are studied using
the HTSE method whose starting point is the expansion of
the correlation function 〈Si · Sj〉 = TrSi·Sje

−βH/Tre−βH

between spins at sites i and j in powers of β [16]:

〈Si · Sj〉 =
∞∑

l=0

(−1)l

l!
αlβ

l, (2)

where β = 1/kB T with kB being the Boltzmann con-
stant. The calculation of the coefficients αl leads to a di-
agrammatic representation [16], which involves two sepa-
rate phases:

– The finding and cataloging of all diagrams or graphs
which can be constructed from one dashed line con-
necting sites i and j, and l straight lines, and the de-
termination of diagrams whose contribution is nonva-
nishing.

– Counting the number of times that each diagram can
occur in the magnetic system.

In our case, we have to deal with nearest-neighbour cou-
pling Jij . The coefficient αl may be expressed for each
topological graph as [16]:

αl = S̄2
(−2S̄2

)l
(
Jm1

i k1
Jm2

k2 k3
· · ·Jmv

kw j

)
[αl] , (3)

with the condition
∑v

r=1 mr = l for mr = 0, 1, · · · , l.
The weight [αl] of each graph is tabulated and given in
reference [16] and k1, k2, · · · , kw represent the sites sur-
rounding the sites i and j. The relationship between the
magnetic susceptibility per spins χ (T ) and the correlation
function may be expressed as follows:

χ (T ) =
β

NN

∑

ij

〈Si · Sj〉 . (4)

N is the number of the layers in the unit cell and N is the
number of magnetic ions in each layer. The HTSE tech-
nique is developed for the magnetic susceptibility χ (T )
with arbitrary exchange couplings Ja, Jb and Jab up to
order 6 in β. We obtain the following function:

χ (T )=gµ2
B βS̄2

6∑

n=0

n∑

p=0

n∑

q=0

aν (p,q,n)
(

Jb

Ja

)p(
Jab

Ja

)q

τ−n,

(5)
with τ = kB T/2S̄2Ja and the condition p + q ≤ n. g
is the gyromagnetic ratio and µB is the Bohr magneton.
For the Ising and XY models, we considered the new val-
ues of [αl] by using the transformation depending only
on the dimension ν of the spin (i.e.: ν = 1 for the Ising
type, ν = 2 for XY type and ν = 3 for the Heisenberg
type), given in Table 1 of reference [22]. The coefficients
aν (p,q,n) are computed for some unit cell thicknesses
(Na = 3,· · · , 32; Nb = 5) and are available on request.
We use the well-known Padé Approximants method [15]
to estimate the critical parameters τc (ν) = kBTc/2 S̄2Ja

and the effective critical exponent γeff (ν) associated with
the magnetic susceptibility χ (T ).

3 Results and discussions

The calculations were carried out in order to investi-
gate the effects of the superlattice thickness and different
exchange couplings on the reduced critical temperature
τc (ν) = kBTc/2 S̄2Ja and on the effective critical expo-
nent γeff (ν) associated with the magnetic susceptibility χ.
Throughout this paper, we take Ja as the unit of energy
(Ja = 1) and Nb will be equal to 5.

We first consider the symmetric case with Jb = Ja.
Figure 2a shows the variation of τc (ν) with Jab for three
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Fig. 2. The reduced critical temperature τc (ν) versus the pa-
rameter Jab for case where Na = 5 and for the three models:
Heisenberg (dashed lines), XY (doted lines) and Ising (solid
lines). The number accompanying each curve denotes the value
of thickness Na of the constituent A. The doted-dashed hori-
zontal lines correspond to the bulk critical temperature of the
material: (a) Jb = 1.0; (b) Jb = 0.95.

values of the thickness (Na = 3, 5, 12). We see that all the
curves intersect at the same abscissa, Jc

ab = 1, and ordi-
nate points τB

c (ν), with τB
c (1) = 4.526, τB

c (2) = 2.2202
and τB

c (3) = 1.4651. At these points, the superlattice
becomes similar to a three-dimensional infinite bulk sys-
tem, where the ordering temperature remains insensitive
to the thickness of the unit cell. As we enlarge the value
of Jab the superlattice ordering temperature is raised, and
when Jab is greater than Jc

ab, τc (ν) becomes higher than
that of the bulk one, τB

c (ν). Another characteristic of the
curves, as indicated in Figure 2a, is the increasing reduced
Curie temperature when the thickness of the superlattice
increases for Jab < Jc

ab. The opposite tendency is seen for
Jab > Jc

ab, which may be explained by the appearance of
magnetic order in the interfaces above Jc

ab [20]. In Fig-
ure 2b, we display the case when Jb is equal to 0.95; this
figure is qualitatively similar to Figure 2a. We remark that
the strength of Jab, acting on the interfaces, causes the
critical value Jc

ab to move to a higher value (Jc
ab = 1.29)

in the same way for the three models. According to this re-
sult, it should be necessary to compute the phase diagram
in the (Jc

ab (ν) , Jb) plane.
In Figure 3 we investigate this phase diagram by plot-

ting the dependence of Jc
ab (ν) on Jb; for Ising, XY and

Heisenberg models. It can be seen that Jc
ab (ν) increases

when Jb decreases and vanishes below the critical value
J∗

b (ν) and above the critical value J∗∗
b : J∗

b (1) = 0.7,
J∗

b (2) = 0.78, J∗
b (3) = 0.82 and J∗∗

b (ν = 1, 2, 3) = 1.11.
When the magnetic order of slab A (B) dominates i.e.
Jb > J∗∗

b (Jb < J∗
b ), the superlattice becomes equivalent

to a succession of relatively isolated ferromagnetic films
and will not be comparable to an infinite bulk struc-
ture. Then the reduced critical temperature of the sys-

ν
Fig. 3. Phase diagram in terms of the coupling Jc

ab versus
Jb, for the three models: Heisenberg (dashed lines), XY (doted
lines) and Ising (solid lines).

tem depends on the thickness of the unit cell, and on the
strength of the exchange couplings in the bulk (slabs A
and B). We note that the three curves coincide in the
range 0.95 ≤ Jb ≤ 1.10 and take distinct values for
Jb < 0.95 and Jb > 1.05. In the latter ranges and for
a fixed value of Jb, Jc

ab (ν) increases with the dimension-
ality of the spin. This is ascribed to the degree of freedom
of the spin. A comparable situation has been obtained by
Saber et al. [24] when they studied the effect of a trans-
verse field on the 1/2-Ising superlattice. They found that
the transverse field increases the critical values Jc

ab (1) for
lower values of the parameter Jb (see Fig. 6 of Ref. [24]).

To study the effect of the interface interaction param-
eter on the reduced critical temperature of the superlat-
tice, τc (ν) is calculated as a function of the thickness
Na of slab A and for four values of Jab (Figs. 4a to d).
Figure 4a corresponds to the symmetric (Jb = Ja). For
Jab < 1.0, τc (ν) increases with Na and approaches asymp-
totically τB

c (ν) as the number of layers becomes larger.
For Jab > 1.0, τc (ν) decreases as Na increases and tends
to a constant limit. One may explain this feature as fol-
lows: for Jab > 1.0, the system may be ordered in the
interfaces before it is in the two slabs, i.e. the interface
magnetic order dominates and when the number of lay-
ers is very large, the system can be considered practically
as a two-constituent superlattice with a temperature de-
pending on magnetic coupling at the interface Jab. For
Jab < 1.0, the system may be ordered in the two materi-
als A and B before it orders in the interfaces and when
the number of layers increases, the ordering temperature
of the system tends to the bulk one. For the symmetric
case, the magnetic order of the two constituents A and
B compete with the magnetic order of the interface. In
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Fig. 4. The variation of τc (ν) as a function of thickness Na, of slab A (Nb is fixed to 5) for given values of Jb and for the
Heisenberg (open circles), XY (open triangles) and Ising (solid circles). The number accompanying each curve denotes the value
of Jab: (a) Jb = 1; (b) Jb = 1.4; (c) Jb = 0.1; (d) Jb = 0.696.

Figures 4b to d, we investigate the asymmetric case
(Jb �= Ja). Several characteristics appear when Jb takes
some values outside the range [J∗

b (ν) , J∗∗
b ], where Jc

ab
vanishes (see Fig. 3). In Figure 4b, we display the vari-
ation of τc (ν) with the thickness Na, for Jb = 1.4. This
figure shows that the value of the reduced critical tempera-
ture τc (ν) decreases with Na and remains higher than the
temperature of the bulk, for all values of Jab. The opposite
tendency is shown in Figure 4c when Jb is weak (Jb = 0.1);
the reduced critical temperature τc (ν) increases with Na

but remains less than the temperature of the bulk for all
values of Jab. These behaviours may be understood as fol-

lows: for Jb /∈ [J∗
b (ν) , J∗∗

b ] the system may be assimilated
to a succession of isolated thin films where the slab A con-
stitutes the bulk of the thin film (because of the variation
of Na) bordered by two pseudo-surfaces formed from the
slab B. When the magnetic order of the pseudo-surfaces
dominates (Jb = 1.4), the reduced critical temperature of
the superlattice will be higher than the bulk one. The op-
posite situation is obtained if the magnetic order of the
bulk (slab A) is greater (Jb = 0.1), independent of the
strength of the interface exchange coupling Jab. The vari-
ation of the τc (ν) is then governed by competition of the
magnetic order of the constituent A and the constituent
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Table 1. The adjusted values of Jb and the corresponding critical temperatures τ∗
c (ν = 1,2,3) for each critical thickness Nc

a .

Nc
a 3 4 5 7 9 12 14 16 20 22 24 28

Jb 0.421 0.512 0.579 0.648 0.696 0.750 0.771 0.778 0.801 0.811 0.813 0.817

τ∗
c (1) 4.3039 4.3915 4.4092 4.4375 4.4435 - - - - - - -

τ∗
c (2) 2.1062 2.1554 2.1652 2.1793 2.1819 2.1819 2.1845 2.1896 - - - -

τ∗
c (3) 1.3843 1.4202 1.4273 1.4367 1.438 1.4383 1.4395 1.4429 1.4452 1.446 1.4476 1.45

B. In the intermediate case i.e. Jb = 0.696, Figure 4d
shows that for a fixed value of Jab and for Jb < 1, τc (ν)
increases with Na gradually to reach a constant for large
values of the thickness. In this case, an interesting result
appears: all the curves corresponding to the different val-
ues of Jab, coincide in a critical length N c

a = 9 in which
the reduced temperature τ∗

c (ν) of the superlattice does
not depend on the interface exchange parameter Jab. N c

a

is the same for the three models. The system presents a
bulk behaviour with a reduced critical temperature less
than the bulk one: τ∗

c (ν) < τB
c (ν). The magnetic orders

of the constituents A and B compete between each other
and lead to a critical value of N c

a at which this competition
may be cancelled. The value of N c

a remains sensitive to the
choice of the value of Jb because the exchange coupling of
each slab acts indirectly onto the correlation function be-
tween two sites of the two slabs (Eqs. (2) and (3)). In
Table 1, we give the values of N c

a and the corresponding
critical temperatures τ∗

c (ν) for each adjusted value of Jb.

On the other hand, according to the universality hy-
pothesis, critical phenomena can be described by quanti-
ties that do not depend on the microscopic details of a
system, but only on global properties such as the dimen-
sionality and the symmetry of the order parameter. It has
been a point of interest to see the influence of exchange
couplings on the behaviour of the effective critical expo-
nent γeff (ν), associated with the magnetic susceptibility
of the superlattice. The γeff (ν) dependence of the value
of Jab, for the three models and for some lengths of the
unit cell, is depicted in Figure 5.

For the symmetric case, γeff (ν) vary continuously with
the enhancement of the exchange coupling within the in-
terface and remain independent of Jab in the neighbour-
hood of Jab = 1; namely in the range 0.868 ≤ Jab ≤
1.101. The corresponding values of the effective critical
exponent were: γeff (1) = 1.2456, γeff (2) = 1.2916 and
γeff (3) = 1.3819 which may be compared with the val-
ues of the universality classes. However, the deviation
from the universal value (γ = 4/3) for the Heisenberg
case is not negligible. It is worth noting that the present
value almost coincides with that obtained by Stanley [23]
and Chakraborty [25] for the simple cubic lattice. For
Jab > 1.101 and Jab < 0.868, the estimate of γeff (ν),
regarded as a function of Jab and the unit cell thickness,
shows rapid variation. To understand what causes γeff (ν)
to behave in this fashion, an instructive phenomenologi-
cal picture in view of the symmetry of the system may be

given. For 0.868 ≤ Jab ≤ 1.101, the system is similar to a
simple cubic lattice with consistent critical exponents. The
parameter Jab introduces some magnetic asymmetry into
the system and thus causes a noticeable inhomogeneity on
the distribution of the exchange couplings because those
variation effects were not equivalent in the three crystallo-
graphic directions. The latest characteristic (asymmetry)
may be viewed as a defect of the system. In other words,
the variation of γeff (ν) is essentially due to the break-
down of the cyclic condition (the translation invariance)
along the normal direction. A change in the exponent is
expected when the effective dimensionality of the super-
lattice is altered by the lattice anisotropy. The effective
critical exponent describes the singular behavior of the
phase transition when the system crosses over from one
universality class (three dimension) to another, i.e. as the
system approaches the thin film-like limit (succession of
isolated thin films) for which the real dimensionality is not
well established.

4 Conclusion

The high-temperature series expansions method is applied
to study the magnetic properties of two-component super-
lattice having simple cubic structure, through Ising, XY
and Heisenberg models. We have discussed the effects of
the interface exchange coupling Jab the bulk exchange cou-
plings Ja and Jb, and the thickness of the unit cell on the
magnetic properties of the superlattice.

A number of characteristic behaviours have been re-
ported. The main result is that there exists a critical Jc

ab
of Jab, below which the reduced critical temperature of the
system τc (ν) = kBTc/2S̄2Ja is less than the bulk one, and
then the system may ordered in the bulk form before in
the interfaces. The opposite tendency is seen for Jab > Jc

ab
and the magnetic order of the interfaces becomes promi-
nent. The values of Jc

ab for the three models (Ising, XY,
Heisenberg) coincide in the range of Jb, where the system
is still comparable to the infinite simple cubic lattice. For
higher (Jb = 1.4) and weaker (Jb = 0.1) values of Jb, the
system is similar to a succession of isolated films and then
the critical parameter Jc

ab vanishes. In this case and when
we investigated the effect of the thickness of the unit cell, a
competition of the magnetic order between the constituent
A and the constituent B appears and leads to a τc (ν) be-
haviour which may be compared to that of thin film. The
balance of the magnetic order gives a special characteris-
tic: for Jb < Ja and Nb > Na, there exists a critical length
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Fig. 5. The variation of the effective critical exponent γeff (ν)
as a function of Jab, for Jb = 1 and for the models: Heisenberg
(dashed lines), XY (dotted lines) and Ising (solid lines). The
number accompanying each curve denotes the value of thick-
ness Na of the constituent A.

N c = Nb + N c
a of the unit cell at which τc (ν) remains

insensitive to the exchange coupling, Jab, within the in-
terfaces. We have also made a study of the dependence of
the behaviours of the effective critical exponent γeff (ν),
associated with the magnetic susceptibility χ, with Jab for
the symmetric case (Jb = Ja). Some discussions are given
concerning the variation of γeff (ν) with Jab, in view of
the symmetry of the superlattice. The values of the effec-
tive critical exponent γeff (ν) corresponding to the three
models (Ising, XY, Heisenberg) are close to the universal
classes, in the limit cases when the system is still com-
parable to an infinite simple cubic lattice. The crossover
effects from three-dimensional superlattice to a succession
of isolated thin films, are the origin of the variation of the
effective critical exponent.
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Physica A 291, 399 (2001)
25. K.G. Chakraborty, Physica A 227, 291 (1996)


